ABSORPTION AND METABOLISM OF CrO₄²⁻ BY ISOLATED CHLOROPLASTS

G. DESMET, A. DE RUYTER and A. RINGOET

Association Euratom-ITAL, Keijenbergseweg 6 (PO Box 48), Wageningen, The Netherlands

(Received 1975)

Key Word Index-Chromium, chromate, absorption, metabolism in chloroplasts

Abstract—When CrO_4^{2-} , a potential pollutant in the environment, reaches the chloroplasts of leaves, it is absorbed, and probably transformed into another chemical form by the chloroplasts. In chloroplasts, activated by light, CrO_4^{2-} is an electron acceptor of photosynthesis, and it competes with MV for the same electron donor substrate. No ATP production is necessary for the CrO_4^{2-} reduction, unlike for the reduction of SO_4^{2-} .

INTRODUCTION

Chromium in its various chemical forms may pollute the plant components of natural and agricultural ecosystems. In experiments with whole rice plants a small translocation of this heavy metal to the aerial part of the plant was observed [1].

A preliminary experiment [2] showed the possible uptake of Cr^{3+} and $\operatorname{CrO}_4^{2-}$ by isolated chloroplasts. Because Cr^{3+} precipitates at a pH above 5·5, no further attention has been paid to this form and therefore only $\operatorname{CrO}_4^{2-}$ has been investigated. It has been suggested [3] that $\operatorname{CrO}_4^{2-}$ competes with the SO_4^{2-} uptake in *Chlorella*, and though the $\operatorname{CrO}_4^{2-}$ was absorbed, it was apparently not metabolized [4].

RESULTS AND DISCUSSION

Absorption and transformation of CrO_4^{2-} by chloroplasts in the dark

The amount of CrO_4^{2-} disappearing from the supernatant was small. The relation between the concentration of CrO_4^{2-} in the medium and the amount absorbed by the chloroplasts is shown in Fig. 1. A maximum absorption of 40 ng CrO_4^{2-} per μ g chlorophyll was observed. The question arises whether chromium in "dark" chloroplasts is present as CrO_4^{2-} or in a more reduced form

Therefore spectra of CrO_4^{2-} at different concentrations, with and without chloroplasts were compared. All data on CrO_4^{2-} in the presence of chloroplasts were normalized by the use of the extinction of the chloroplast suspension at 680 nm, since at this wavelength CrO_4^{2-} itself does not absorb light. According to Fig. 2, where the spectrum of CrO_4^{2-} (5 × 10⁻⁵ M) absorbed by chloroplasts was compared to the spectrum of CrO_4^{2-} in solution at the same concentration, the

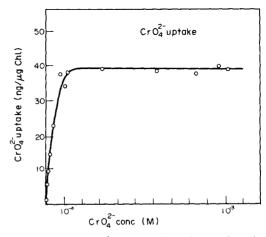
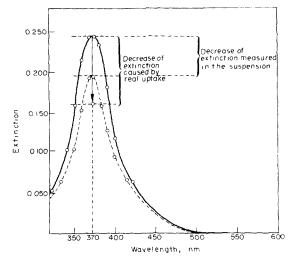
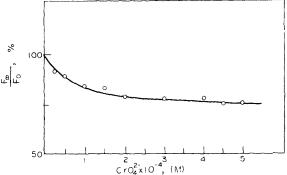


Fig 1 Amount of CrO₄² uptake after 15 min of incubation by isolated chloroplasts at different CrO₄² concentrations in the medium

2585




Fig 2 Comparison between spectra of absorbed and free CrO_4^2 , \bigcirc —— \bigcirc free CrO_4^{2-} , \bigcirc — \bigcirc absorbed CrO_4^{2-} Extinction decrease and real uptake are compared at 372 nm

extinction of CrO_4^{2-} was significantly decreased by contact with the chloroplasts. It is thus likely that on absorption, part of the CrO_4^{2-} is transformed or even reduced, although no wavelength shift is observed. The apparent absence of a wavelength shift can be explained by considering the smallness of the extinction decrease of the "absorbed" CrO_4^{2-} . Actually, the molecular extinction coefficient (ϵ) of CrO_4^{2-} is approximately 4100 while Cr (III) complexes generally have ϵ values varying between 10 and 100[5] Therefore, a wavelength shift due to a reduction to Cr (III) is not easily detectable.

This extinction decrease of CrO_4^2 at 372 nm, due to the contact with chloroplasts was also compared (Fig. 2) to the extinction decrease used for calculating the amount of $\text{CrO}_4^{2^-}$ uptake. This extinction decrease represents about 60°_o of the extinction decrease due to uptake. It could be suggested from these data that part of the absorbed $\text{CrO}_4^{2^-}$ is transformed into another chemical form, and part of it is present as free $\text{CrO}_4^{2^-}$ in the chloroplasts

Interaction of CrO_4^{2-} with illuminated chloroplasts

The E_0' of CrO_4^{2-}/Cr^{3+} in an alkaline medium is given to be about -0.13 V [6]. The light-activated chloroplasts generate a redox power of at least -0.40 V [7]. Because of these data, the influence of CrO_4^{2-} on the electron transport in chloroplasts was investigated. This was done by

 $F_{1g}/3$. Relation between the concentration of CrO_4^2 , and the decrease of the ratio $F^{\,\prime}/F_o$

measuring the influence of CrO_4^{2-} on the intensity of variable fluorescence of illuminated chloroplasts, known to be related to the reduction of Q by photosystem II [8] and to the oxidation of Q^- by an electron acceptor [9].

According to the present results the fluorescence ratio F'/F_0 depended on the same CrO_4^2 concentration range as the uptake (Fig. 3). Furthermore, the "Hill reagent" capacity of CrO_4^{2-} was studied and it was shown that O_2 production by illuminated chloroplasts depended upon the concentration of CrO_4^{2-} . The O_2 evolution in the presence of 10^{-3} M $Fe(CN)_6^{3-}$ was used as a reference (Fig. 4).

The results thus show that the concentrations of CrO_4^2 of metabolic interest coincide with those for uptake. CrO_4^2 is clearly an electron acceptor for the photosynthetic electron transport chain, devoid of any natural or other acceptor Nevertheless, when methylviologen (MV) was added to the medium as a substitute for NADP $^+$, the natural final acceptor in electron transport

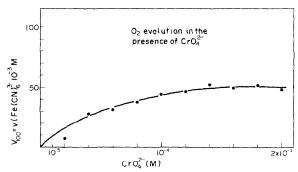


Fig. 4. Rate of O_2 evolution in the presence of CrO_4^{1-} . The O_2 evolution in the presence of 10^{-3} M Fe(CN) $_6^3$ is used as 100° reference.

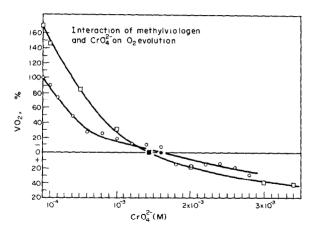


Fig 5. Interaction of methylviologen and CrO_4^{2-} on the rate of O_2 evolution Above the zero line, O_2 uptake, below, O_2 evolution is shown. \bigcirc — \bigcirc . in absence of MeNH₃Cl, \square — \square in presence of MeNH₃Cl.

[7] a considerable shift of the metabolic activity of $\text{CrO}_4^{2^-}$ with respect to the concentration was observed (Fig. 5). In the presence of 5×10^{-5} M MV an O_2 uptake was observed due to a kind of Mehler reaction [10]. As a result of the supply of increasing amounts of $\text{CrO}_4^{2^-}$ the O_2 consumption was shifted towards an O_2 production. Apparently $\text{CrO}_4^{2^-}$ competes with MV for the same electron donor substrate, because compared to the data in Fig. 4 approximately ten times more $\text{CrO}_4^{2^-}$ was needed to achieve an O_2 production. When the electron transport rate was increased by the uncoupler MeNH₃Cl, there was no effect on the competition between MV and $\text{CrO}_4^{2^-}$, since no further shift was observed.

It can thus be concluded that a common electron donor pool exists for MV and CrO_4^{2-} . The experiments with MeNH₃Cl furthermore prove that no active ATP production catalyzes the CrO_4^{2-} reduction, in contrast to what is generally accepted for SO_4^{2-} reduction.

One must comment on the striking effect of CrO_4^{2-} on the maximal rate of electron transport. It never reached the same level as in the presence of $Fe(CN)_6^{3-}$ (Fig. 4). Normally, the rate should be the same in both cases since the CrO_4^{2-} competes with MV for a site beyond the rate limiting step of photosynthesis [11]. There may be several possible explanations for the lower effectiveness of CrO_4^{2-} . A derivative of CrO_4^{2-} may be produced in the preceding dark incubation period,

or the velocity constant for the reduction of CrO_4^{2-} in the light by its immediate preceding donor may itself become the rate-limiting step of the overall electron transport process. This hypothesis receives some support from the finding that CrO_4^{2-} depressed the variable F' only to a small extent, i.e. a rather high substrate concentration of the electron donor in the chloroplast was necessary for the CrO_4^{2-} reduction.

From the experiments described in Figs. 4 and 5, it became evident that CrO_4^{2-} may act as an electron acceptor in chloroplasts, and moreover that it competes with MV. Consequently similar experiments were done with the well-known 'Hill' acceptor $Fe(CN)_6^{3-}$ and different concentrations were tested (Fig. 6). The effect on O_2 evolution was comparable to that observed for CrO_4^{2-} in Fig. 4.

A maximal rate was reached at 10^{-3} M $Fe(CN)_6^{3-}$. In contrast, however, to what was found with CrO_4^{2-} , MV could not change the initial, $Fe(CN)_6^{3-}$ dependent, rate of O_2 evolution. This means, that initially all the electrons produced by active chloroplasts are channelled to $Fe(CN)_6^{3-}$ and do not reach MV, while CrO_4^{2-} even at the lowest concentrations competes with MV. From these observations it can be concluded that $Fe(CN)_6^{3-}$ acts on the electron transport before MV, while CrO_4^{2-} has probably the same electron donor as MV.

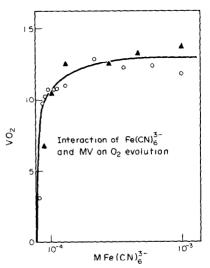


Fig 6. Rate of O_2 evolution in the presence of $Fe(CN)_6^{3-}$ O—O with $Fe(CN)_6^{3-}$, \blacktriangle — \blacktriangle $Fe(CN)_6^{3-}$ and MV

EXPERIMENTAL

Chloroplasts were isolated from spinach leaves (Spinacea oleracea L. cv. Verbeterd Breedblad). Plants were grown in climate controlled rooms (day 22°, night 15°, daylength 13 hr, light-intensity of 33000 lux, and relative humidity of 65-70% for 3 weeks using Hoagland-Arnon I soln. The isolation and measuring medium for the chloroplasts contained TES pH 7-6, 10⁻² M MgCl₂, 10⁻² M KCl and 0.35 M sucrose. Chloroplasts were obtained from an homogenate centrifuge filtered through 4 layers of nylon cloth, and centrifuged at $4000\,g$ for 4 min. Chlorophyll content was calculated by the method described by Bruinsma [12]. Uptake of CrO₄²⁻ by the chloroplasts was measured by spectrophotometry combined with centrifugation. Chloroplasts were incubated for 15 min, in the same medium as the one described above, centrifuged at 20000 g and the decrease of the extinction of the CrO₄² in the supernatant measured at 372 nm in the spectrophotometer. O₂ measurements were made with a YSI Clarck electrode. Fluorescence induction was excited at 475 nm and observed at 680 nm. All the experiments were done at 20°. Acknowledgements—The authors wish to thank W. Dirkse and D. Ketel for their excellent technical assistance, and G. Jupijn for constructing the fluorescence apparatus. Contribution no. 1012 of the European Community Directorate for Biology.

REFERENCES

- Verfaillie, G. R. M. (1973) The Kinetics of Chromium Absorption by Intact Rice Plants. In press.
- Desmet, G., Ruyter, A. de and Ringoet, A. On chromium uptake by isolated chloroplasts. Euratom, Annual report 1972, p. 159.
- 3. Vallée, M. (1969) Biochim. Biophys. Acta 173, 486-500.
- Wilson, L. G. and Bandurski, R. S. (1958) J. Biol. Chem. 233, 975-981.
- Balzani, V. and Carassiti, V. (1970) Photochemistry of Coordination Compounds, London and New York, Academic Press.
- Latimer, W. M. (1952) Oxidation Potentials. 2nd ed. Prentice Hall, New York.
- 7. Zweig, G. and Avron, M. (1965) Biochem. Biophys. Res. Commun. 19, 397.
- 8. Duysens, L. N. M. and Sweers, H. E. (1963) In *Japan Soc. Plant Physiol, Studies on Microalgae and Photosynthetic Bacteria*, p. 353. Univ. Tokyo Press, Tokyo.
- 9. Malkin, S. (1966) Biochim. Biophys. Acta 126, 433
- 10. Mehler, A. H. (1951) Arch. Biochem. Biophys. 34, 339.
- Witt, H. T. (1967) Fast Reactions and Primary Processes in Chemical Kinetics. Nobel Symp. V. (Claesson, S. ed.) pp. 261–316, Almquist & Wiksell. Stockholm, Interscience, New York.
- 12. Bruinsma, J. (1963) Photochem. Photobiol. 2, 241.